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Abstract

Since their release in 2007, smartphones and their use have seemingly become a funda-

mental aspect of life in western society. Prior literature has suggested a link between mobile

technology use and lower levels of cognitive control when people engage in a cognitively

demanding task. This effect is more evident for people who report higher levels of smart-

phone use. The current study examined the effects of smartphones notifications on cogni-

tive control and attention. Participants completed the Navon Letter paradigm which paired

visual (frequent and rare target letters) and auditory (smartphone and control sounds) sti-

muli. We found that overall, participants responded slower on trials paired with smartphone

notification (vs. control) sounds. They also demonstrated larger overall N2 ERP and a larger

N2 oddball effect on trials paired with smartphone (vs. control) sounds, suggesting that peo-

ple generally exhibited greater levels of cognitive control on the smartphone trials. In addi-

tion, people with higher smartphone addiction proneness showed lower P2 ERP on trials

with the smartphone (vs. control) sounds, suggesting lower attentional engagement. These

results add to the debate on the effects of smartphones on cognition. Limitations and future

directions are discussed.

Introduction

“My favorite things in life don’t cost any money. It’s really clear that the most precious

resource we all have is time.”- Steve Jobs

Acknowledging the global prevalence of smartphone use requires little convincing, given

the ubiquity of text messaging, selfie liking, and unlimited access to information at the touch

of a button [1]. According to the Pew Research Center, 94% of adults in advanced economies

own a smartphone or a similar device [2]. Since the release of the first iPhone, a large body of

research has investigated the social and psychological impacts of mobile technology. Smart-

phones are undoubtedly beneficial in many ways, such as connecting with loved ones and
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supporting our productivity goals [3]. However, smartphone use has also been demonstrated

to have negative influences in a number of important life outcomes, such as “real-world” social

interactions [4], walking and driving abilities [5, 6], and educational outcomes [7, 8]. Other

research demonstrates a negative association between smartphone overuse (i.e., more than 2

hours per day) and psychological well-being [9]. For example, frequent social media use was

found to be associated with a greater likelihood of developing severe anxiety [10], behavior

and attention problems [11], and increasing the risk of suicide-related outcomes [12]. How-

ever, after accounting for other lifestyle factors (e.g., sleep, exercise, diet), the negative associa-

tions between smartphone use and well-being were rather small [13].

Cognition and smartphone use

What may be common to all the aforementioned influences of smartphones described in the

literature is their influences on people’s executive functions, and namely their attention and

cognitive control. From the framework of the cognitive load theory of attentional control [14],

people with better cognitive control should be better at maintaining focus on the task at hand

when exposed to task-irrelevant smartphone notifications. A recent review outlined multiple

studies which have examined the relationships between mobile technology use and cognitive

functions with the majority of studies indicating that increased smartphone use has been asso-

ciated with reduced performance on tasks assessing cognitive control and attention [15]. In

one study for example, heavy smartphone users were found to have a lower capacity for sus-

tained attention during an arithmetic task [16]. Other studies found an increase in error rates

on cognitive control tasks in people who use smartphones and social media more frequently

[17–19]. Other work has demonstrated that people with higher media multitasking behavior

(i.e., engaging in multiple forms of media concurrently) are worse at filtering out irrelevant

distractor stimuli [20, 21], and show heightened attentional impulsivity [22, 23]. In terms of

smartphone notifications, Stothart and colleagues [23] found that receiving a notification

resulted in decreased sustained attention abilities similar to when people were actively using

their devices. Beyond actually using smartphones and hearing notifications, prior studies have

found that even the mere presence of smartphones can negatively affect performance on atten-

tion tasks [24, 25].

Although there is some behavioral evidence for the link between smartphone use and cog-

nitive control, the neurophysiological mechanisms of this association are poorly understood.

Thus, the present study aimed to examine the effects of smartphone notifications on behav-

ioral and neural markers of top down executive functions, namely cognitive control, and atten-

tional processes known to play a role in stimulus orienting and categorization. Recent findings

from neuroimaging research provide a broad understanding of the structural and spatial neu-

ral activity of cognitive control processes associated with smartphone use. For example, cogni-

tive control functions and smartphone use have been separately associated with activity in

similar reward processing regions of dopaminergic neural pathways such as the ventromedial

prefrontal cortex and dorsolateral prefrontal cortex [26, 27]. Another study found that heavy

multimedia users had reduced gray matter volume in the anterior cingulate cortex, known for

its involvement in higher order cognitive control processes [28]. Furthermore, higher media

multitaskers are reported to recruit more neural resources from top-down control networks

during a sustained attention task when they are in the presence of distractor stimuli [19].

Though these findings offer insight into potential neural mechanisms involved in smartphone

use, they do not provide causal explanations, nor do they employ temporally specific measures

necessary for understanding millisecond-level changes in cognitive processes as a function of

smartphone use and exposure to notifications.
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Present study

The present study aimed to examine the extent to which smartphone notifications influence cogni-

tive control and attention on an adapted Local/Global hierarchical letter three-stimulus oddball

paradigm using event-related potentials (ERPs), and behavioral performance. The Local/Global

task requires an individual to attentionally reorient to and update working memory to accurately

respond to the presence of a target letter while monitoring for the presence of rare distractor letters

presented at opposite levels of visual attention [29, 30].The rare target letter presents an exogenous

salient singleton requiring increased recruitment of attentional and cognitive control resources,

specifically those necessary for conflict monitoring [31]. Cognitive control paradigms such as the

Stroop or Erickson Flanker task also measure conflict monitoring, however, the paradigm in the

current study was chosen to heighten engagement of early attentional orienting mechanisms.

While monitoring for conflict between frequent, rare, and non-target trials, participants were

required to ignore inconsistent visual information between hierarchically nested visual stimuli pre-

sented at opposing levels of local or global attention. Therefore, this paradigm allowed us to simul-

taneously measure the effects of smartphone notifications on attention and cognitive control.

Cognitive control was measured using the oddball effect, which is calculated by subtracting

reaction times (RT) and ERP amplitudes on frequent target trials from rare target trials. Better

cognitive control is considered to be reflected by a smaller RT oddball effect and a larger ERP

oddball effect [32]. We examined three ERPs, the P200 (P2), N200 (N2), and P300 (P3), which

are commonly accepted in the literature as underlying neural markers of electrical cortical acti-

vation associated with attention and cognitive control processes [30, 33, 34].

This paradigm and various adaptations have been used in prior studies indicating a family

of frontocentral N2 components related to cognitive control [33]. The N2 ERP component is

the second negative peak along the average ERP waveform which generally occurs between

200–350 ms after stimulus onset near frontocentral and central electrode site. N2 is considered

to be involved in strategy regulation, feedback processing, immediate action control, novel sti-

muli detection, and visual attention orienting [33]. Though multiple N2 subcomponents exist,

the current study focused on a frontocentral N2 component related to cognitive control pro-

cesses of response inhibition, response conflict, and error monitoring. This anterior N2 com-

ponent is said to be generated from the anterior cingulate gyrus [35] and is associated with

top-down control of attention [36]. Based on previous literature, we expected that participants

would respond more slowly and would show a smaller N2 oddball effect (i.e., worse cognitive

control) on trials with the smartphone notification (vs. control) sounds.

We examined the P2 ERP as it is likely to be affected by exposure to smartphone notifica-

tions. The P2 ERP is the second positive peak along the average ERP waveform which generally

occurs between 150–250 ms after stimulus onset near frontal electrode sites [34]. P2 is consid-

ered to reflect stimulus monitoring and early attention classification processes and has been

shown to demonstrate differential activation between target stimuli conditions in oddball par-

adigms assessing capacities to withdraw attentional resources away from stimuli [37, 38]. P2 is

said to be generated largely as a result from activation within the reticular activating system

[39] as a response to input from sensory modalities [34]. If it is the case that smartphone notifi-

cations “capture” people’s attention, trials with smartphone notification (vs. control) sounds

should elicit a larger P2 ERP.

Among oddball paradigms, an anterior N2 component to frequent targets is often observed

in combination with a posterior P3 component to distractor targets, suggesting cognitive pro-

cesses involved in contextual and memory updating [40, 41]. The P3 ERP component is the

third positive peak along the average ERP waveform which generally occurs between 250–500

ms after stimulus onset near large frontoparietal scalp electrode networks [30]. P3 can be
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divided into two subcomponents. P3 is said to originate from frontal lobe activation for atten-

tion-driven stimuli processing, particularly for task-irrelevant neural activity elicited during

target stimulus processing [30]. P3 has been considered to be a late cognitive component

involved in endogenous decision-making and stimulus categorization originating from the

dorsolateral prefrontal cortex (DLPFC) which communicates with the cingulate cortex and

parietal structures [35]. P2 and N2 reflect early cognitive processes and are likely to be influ-

enced by exogenous smartphone notifications. P3, on the other hand, should not be affected

by smartphone notifications, as P3 is thought to reflect late cognitive processes involved in

endogenous decision-making and stimulus categorization [32].

We also considered the role of individual differences in self-reported smartphone addiction.

According to Folk and colleagues [42], attentional orienting is dependent upon one’s internal

attentional control settings, which are dictated by people’s current behavioral goals and are sub-

ject to being influenced by their individual cognitive biases. Thus, people who use smartphones

more frequently, should be more likely to have an underlying cognitive bias to orient their

attention to their devices when hearing smartphone notification sounds. In contrast, people

who use their phones less frequently should demonstrate a greater ability to complete behavioral

goals as they are less cognitively biased to orient to their devices when hearing notifications.

In fact, studies have shown that people with excessive (vs. moderate) smartphone use show

higher N2 during a Go-NoGo task in which participants were asked to view smartphone-rele-

vant (vs. control) images [43]. The authors suggested that excessive (vs. moderate) smartphone

users recruited higher levels of cognitive control necessary for inhibition processes in order to

maintain similar levels of goal-directed behavioral performance when exposed to smartphone

related stimuli. Additional work found that people higher (vs. lower) in problematic smart-

phone use, measured by the Smartphone Addiction Proneness Scale, showed smaller N2 ampli-

tudes, delayed response latencies, and higher error rates on a Go-NoGo task [44]. This effect

was found to be stronger when participants were exposed to smartphone notification vibration

sounds. Thus, based on previous studies, we expected that individual differences in proneness

to smartphone addiction would be associated with slower responses and worse cognitive control

(larger RT and smaller N2 oddball effect) on trials with smartphone (vs. control) sounds.

Methods

Ethics statement

The study was approved by the local Institutional Review Board at the University of Arkansas

and was assigned the protocol number 1807134340. All participants provided written

informed consent to participate. Participants were compensated with course credit.

Participants

College students (N = 73; 38 male, 35 females, mean age = 19.78, SD = 0.32, 80% white) partici-

pated for course credit. Participants were daily smartphone users, had normal or corrected to

normal hearing and vision, and were fluent English speakers. Participants had no history of

brain damage or concussions and were not currently diagnosed with any psychiatric disorders.

Participants were instructed to not be under the influence of excessive caffeine, unprescribed

medication, or alcohol at the time of testing.

Materials

Oddball paradigm. A Local-Global Navon letter task [45] was used to measure the odd-

ball effect. This task is identical to the one employed by earlier work [32]. The letter stimuli
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were designed to elicit approximately equal response speed and accuracy for both global

and local letters [46]. In addition, all letter stimuli possessed similar perceptual features [47]

reducing concern for stimulus orienting contingency on attentional control settings [42].

Further, this paradigm was designed such that motor-related confounds for ERPs are

reduced as both target and non-target responses require similar motor activity [48]. The

visual stimuli consisted of twelve composite letters of one global letter comprised of several

uniform (never mixed) local letters (Fig 1A). The local letters (subtending 0.43 by 0.86

degrees of visual angle) were arranged within a 5 cm x 3 cm rectangular grid to form the

global letters (subtending approximately 2.57 by 4.27 degrees of visual angle).

Participants were asked to indicate the presence of a target letter by pressing either Yes (1

key) for “Target letter is present,” or No (2 key) for “Target letter is not present” using their

right hand on a standard keyboard digit pad. Participants were instructed to detect the pres-

ence of lack of presence of the target letter regardless of the size of the letter. Participants com-

pleted two practice blocks consisting of 9 trials each. Visual feedback was provided for

response accuracy on practice trials (“Correct” or “Incorrect”). Following practice trials, par-

ticipants completed 16 experimental blocks (960 trials). Before each block, a “target letter”

screen was displayed on the computer monitor for 12 seconds. The “target letter” screen used

a single red letter (twice in size as the local letters) to identify the specific target letter partici-

pants would be aiming to detect in the following block of trials.

Fig 1. Modified Navon letter oddball paradigm. A): Twelve composite letters: a global A made of local E’s, S’s, or H’s;

a global E made of local A’s, S’s, or H’s; a global H made of local E’s, S’s, or A’s; and a global S made of local E’s, H’s, or

A’s. B): In this example (white background used for example), participants were instructed to determine if the target

letter E is present (either at the global or local level, 80% and 10% of trials, respectively), or not present (10% of trials).

C): Single trial structure of the oddball task. ITI = inter-trial interval.

https://doi.org/10.1371/journal.pone.0277220.g001
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Each block of the task consisted of 60 trials presented in pseudo-random order, ensuring

that an equal number of sound stimuli were presented on frequent, rare, and non-target trials.

On a given block, target letters were displayed on the screen at either the local or global atten-

tional level on 80% of trials, referred to as frequent trials. During the same task block, target

letters of the opposite level of attention were displayed on 10% of trials, referred to as rare tri-

als. The final 10% of trials did not include a target letter, referred to as non-target trials; (Fig

1B). Global and local letter stimuli were counterbalanced such that big “H”s, “E”s, “S”s, and

“A”s, were composed of uniform (never mixed within a single letter) sets of smaller letters for

an equal presentation of hierarchical letter combinations across the 4 four possible letters to

choose from. For example, on a given trial, a big “H” would be comprised of all small “S”s, but

never small “S”s and small “E”s. Each block of 60 individual trials was followed by a self-paced

break period.

Each composite letter stimulus was preceded by one of three auditory stimuli: A smart-

phone notification sound, a lawnmower sound, and a computer-generated control sound. The

smartphone notification sound was the sound of the vibration of smartphone when it receives

an incoming notification. In a separate pilot study, 97% of participants correctly identified the

sound as the smartphone vibration. For the control sound, 14% indicated it was a smartphone

sound, 26% said it was a food processor, and 60% said they could not identify the sound. Fur-

thermore, 63% of participants indicated that their smartphone’s notification setting was typi-

cally set to vibrate (3% on sound, 33% on silent, 1% other), and 70% reported their text

notification setting was set to vibrate most of the time (1% on sound, 29% on silent). Finally,

1% of participants said the smartphone notification was exactly the same as their own, 30%

said it was nearly the same, 55% said it was somewhat similar, and 14% of participants said it

was not at all similar.

The control sound was created in Audacity (v. 2.2.2, [49]), and was a square wave tone

closely matched to the smartphone sound in duration, volume, and sound similarity. The

sounds were delivered via noise canceling insert earphones at 70 percent maximum volume

within safe listening levels (~ 60 dB). The lawnmower sound was included as an additional

control stimulus for sound familiarity (i.e., smartphone vs. ambiguous control sound com-

pared to smartphone vs. lawnmower sound). Consequent examination of the lawnmower

sound acoustic waveform spectrum revealed unintended technical confounds (e.g. stereo-

scopic inconsistency creating a perception of spatial movement (Fig 2C) and was not used in

subsequent analyses. Sound stimuli were presented pseudo-randomly.

There were 960 trials in total: 768 frequent target trials (256 per sound condition), 96 rare

target trials (32 per sound condition), and 96 no target trials (32 per sound condition). On

each trial, a sound was played (~1250 ms) concurrently with a randomly jittered fixation cross

(2650–2850 ms), followed by the letter stimulus (700 ms), during which time participants indi-

cated the presence or absence of the target letter. If participants failed to respond within the

700 ms period, the task timed out and moved on to the next trial. A uniform gray screen

appeared for 500 ms during the inter-trial interval before the next trial began (Fig 1C).

Four participants were excluded from behavioral data analyses due to technical issues or

poor performance on the oddball task (i.e., errors or RTs exceeding +/- 2.5 SD). The final sam-

ple for behavioral analyses included 69 participants. ERP data for 19 participants were

excluded because of technical issues, or for having uncorrectable artifacts greater than 25% of

total trials [48]. The final sample for ERP analyses included 54 participants.

Smartphone addiction. The Smartphone Addiction Proneness Scale (SAPS) [50], is a

15-item self-report questionnaire that assesses individual differences in smartphone addiction

proneness. The scale consists of four factors: Disturbance of adaptive functions (e.g., “My

school grades dropped due to excessive smartphone use.”), virtual life orientation (e.g., “When
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I cannot use a smartphone, I feel like I have lost the entire world.”), withdrawal (e.g., “It would

be painful if I am not allowed to use a smartphone.”), and tolerance (e.g., “I try cutting my

smartphone usage time, but I fail.”). Responses are made on a 4-point Likert-type scale and

range from 1 (strongly disagree) to 4 (strongly agree). The total SAPS score is an average of the

four factors, with higher scores reflecting higher levels of proneness to smartphone addiction.

The SAPS was reported to have high construct validity (NFI = .943, TLI = .902, CFI = .902,

RMSEA = .034) and reliability (α = .88).

Electrophysiological recordings. Continuous EEG data were sampled at 2048 Hz using a

Biosemi Active Two system. EEG data were collected from 32 active Ag/AgCl electrodes

arranged according to the 10–20 system. Two loose lead electrodes below both eyes monitored

eye blinks, 2 on the outer canthi of the eyes monitored horizontal eye movements, and 2 on

the mastoids were used as reference. EEG data were preprocessed in MATLAB (2018b) using

the EEGLAB (v13.6.5b) toolbox before further processing [51]. Continuous EEG data were

down-sampled off-line to 512 Hz and high pass Basic FIR filtered at .1 Hz.

ERP waveform and component analysis. EEGLAB and ERPLAB were used to process

EEG data offline. ERPs were averaged off-line for a 1000 ms total epoch segment (200 ms pre-

stimulus and 800 ms post-stimulus). Artifact detection was performed to assess trials contami-

nated with eye blinks, horizontal eye movement, muscle activity, or other signal noise. First, a

moving window peak to peak artifact detection threshold was used on vertical eye channels

(voltage threshold = 75 μV, moving window width = 200 ms). Second, a step-like artifact

detection analysis on lateral eye channels (voltage threshold = 30 μV, moving window

width = 400 ms, window step = 10 ms). Third, a moving window peak-to-peak threshold was

used on all the channels (voltage threshold = 200 μV, moving window width = 1000 ms). ERPs

were 2nd order (IIR) Butterworth low-pass filtered at 30 Hz (12 dB/octave roll-off).

Participants with greater than 25% overall artifact rejections were reprocessed using inde-

pendent component analysis (ICA) and bad components were inspected using ICLabel, an

EEGLab plugin [52]. Non-brain identified components with greater than 94.5% confidence

were removed from the data. ICA-corrected data were re-processed and artifact detections

Fig 2. Frequency spectral densities and signal waveforms of the auditory stimuli.

https://doi.org/10.1371/journal.pone.0277220.g002
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were repeated. After reprocessing ICA-corrected participants, people with greater than 25%

overall rejection thresholds were excluded from data analysis. Mean ERP amplitudes of ICA

and non-ICA-corrected participants did not differ, independent samples t-tests, ps> .064.

Past literature provides reasonable consensus for the ERP latencies implicated in cognitive

control. However, the defined time windows can and arguably should vary across studies

depending on variations in study design, stimuli, tasks, participants, conditions and unknown

noise [53, 54]. Thus, a data driven approach to defining ERP latency windows provides an

optimal solution for accounting for these variations in temporal and spatial location of condi-

tion effects, reducing Type I and II error rates. Precise parameters for the ERP component

temporal latency windows were determined through the grand average of conditions across

participants. Peak latency analyses were performed for each component at their maximal chan-

nel sites. P2, N2, and P3 mean amplitudes were measured at channel sites Fz (150–210 ms), F3

(220–380 ms), and Pz (260-700ms), respectively [34, 33, 30]. Latency windows based on prior

literature were applied to detect peak amplitudes and then visually inspected to capture the

entire ERP component. To avoid component overlap, a 10 ms time window was used to sepa-

rate component latencies [55]. A mean amplitude value between these latencies was calculated

for subsequent analyses.

The oddball effect was computed for each ERP component by subtracting the mean ampli-

tude on frequent target trials from rare target trials. P2 is a positive-going component, thus

larger positive values indicate a larger oddball effect, reflecting better stimulus monitoring and

early classification processes. The N2 is a negative-going component, thus smaller positive val-

ues indicate a larger oddball effect, reflecting better cognitive control. P3 is a positive-going

component, thus larger positive values indicate a larger oddball effect, reflecting better task rel-

evant stimulus categorization processing.

Procedure

Eligible participants volunteered to participate in the study. Participants were positioned 67cm

from the center of the computer screen and received instructions for the oddball task. They

were instructed to respond quickly and accurately on all trials. To reduce EEG artifacts, partic-

ipants were asked to minimize blinking, facial, and bodily movement throughout the task.

After two practice blocks (18 trials), participants completed 16 blocks of the oddball task while

EEG data were recorded continuously. Each block lasted approximately 5 minutes, with a

75-minute approximate total task time. After the task, participants completed questionnaires

via Qualtrics. The entire session lasted approximately 150 minutes.

Analytical strategy

Data were analyzed in RStudio [56]. For RTs, analyses were conducted using linear mixed

effect regression (LMER) models with random slopes for the trial frequency condition (rare

and frequent) and random intercepts for each participant to account for within-subject vari-

ance in RT across all trials (lmerTest v. 3.1.1) [57]. This model was found to provide the best fit

of the data relative to simpler LMER models. An intraclass correlation (ICC) of 0.14 for RT

within participant was found, warranting the use of mixed linear models. We assessed differ-

ences in RT on rare vs. frequent target trials to evaluate the presence of oddball effect, then

determined if RT varied as a function of trials with smartphone notifications vs. control

sounds. Then, we assessed if differences in the oddball effect were present as a function of the

sound condition. A three-way interaction regression was then performed to assess the moder-

ating role of smartphone addiction in the effects of smartphone notifications on cognitive

control.
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For the accuracy analyses, we conducted generalized linear mixed effects regression model

with error rate as the dependent variable and random slopes for trial frequency and random

intercepts for participant. We used a bound optimization by quadratic approximation with a

binomial family distribution of 0 for correct and 1 for incorrect trials.

For ERPs, paired sample t-tests were conducted to compare the grand averaged mean

amplitudes of the P2, N2, and P3 components on rare and frequent targets (oddball effect),

and on trials with smartphone and control sounds (trial to trial data were not available). Linear

models were carried out to determine whether smartphone addiction scores predicted overall

ERPs, overall oddball ERPs, and oddball ERPs between sound conditions (smartphone vs. con-

trol sounds).

Results

Behavioral findings

Reaction time. Mixed model regression analyses revealed that, across all trials

(N = 37,769), participants responded slower on rare (M = 476.99 ms, SD = 115.57) than on fre-

quent trials (M = 426.83 ms, SD = 87.53), Cohen’s d = 0.49, demonstrating a reliable 50.96 ms

oddball effect with a medium effect size (Table 1). As predicted, participants responded signifi-

cantly slower on trials with smartphone sounds (M = 432.97 ms, SD = 92.10) than on trials

with control sounds (M = 429.70 ms, SD = 90.95), Cohen’s d = .04, demonstrating a small

effect size. There was no significant interaction between trial frequency and sound condition,

indicating that cognitive control did not differ as a function of the sound condition.

Additional regression models were conducted separately for frequent (N = 34,372) and rare

(N = 3,397) target letter trials, to determine the extent to which, if any, trial frequency played a

role in the effects of the sound conditions on RTs. On frequent trials participants responded

significantly slower on trials with smartphone sounds (M = 428.51, SD = 87.95) than control

sounds (M = 425.15, SD = 87.08), Cohen’s d = .04 (Table 2). On rare trials, however, partici-

pants did not differ in their speed on smartphone (M = 477.53, SD = 117.29) and control

(M = 476.46, SD = 113.80) sound trials, Cohen’s d = .01. These findings suggest that partici-

pants slowed down on smartphone trials on frequent, but not on rare trials.

Individual differences in proneness to smartphone addiction. We then sought to deter-

mine the role of individual differences in smartphone addiction in response speed to smart-

phone notifications. We conducted a mixed linear model with RT as the outcome variable,

trial frequency (frequent vs. rare trials), sound condition (smartphone vs. control sounds), and

smartphone addiction (continuous, mean centered) as predictor variables. Results revealed

that individual differences in smartphone addiction did not predict overall response speed

(Table 3). There was no significant interaction between trial frequency and smartphone

Table 1. Regression with reaction times predicted by trial frequency and sound condition.

95% CI

Predictor b SE Lower Upper df t p
Trial Frequency a 50.96 3.74 43.53 58.39 68 13.63 < .001

Sound b 3.18 1.51 0.23 6.13 37670 2.11 .035

Trial Frequency x Sound -0.73 3.01 -5.17 6.63 37700 -0.24 .808

Reaction times on the oddball task as a function of trial frequency (rare vs. frequent) and sound condition (smartphone vs. control).
a Trial frequency was contrast coded at -.5 for frequent and .5 for rare target trials.
b Sound condition was contrast coded at -.5 for control sound and .5 for smartphone sound. Dependent variable = Reaction time in ms. CI = Confidence Interval.

https://doi.org/10.1371/journal.pone.0277220.t001
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addiction, revealing that the RT oddball effect (i.e. cognitive control) was not significantly dif-

ferent as a function of smartphone addiction levels. RT did not significantly differ between

smartphone and control sound conditions as a function of individual differences in smart-

phone addiction. Finally, the three-way interaction between trial frequency, sound condition,

and smartphone addiction was not significant.

Additional regression analyses were conducted separately for frequent and rare trials. On

frequent trials, there was a significant two-way interaction between sound condition (smart-

phone vs. control) and smartphone addiction (Table 4 and Fig 3). Specifically, people with

higher levels of smartphone addiction were significantly slower to respond on frequent trials

with smartphone (vs. control) sounds. On rare trials, the two-way interaction between sound

condition (smartphone vs. control) and smartphone addiction was not significant, indicating

that response speed did not differ between smartphone (vs. control) sounds as a function of

smartphone addiction levels on rare trials.

Accuracy. A generalized linear regression revealed that people made significantly more

errors on rare (N = 4065, M = 16.43%, SD = 0.37) compared to frequent trials (N = 34806,

M = 1.25%, SD = 0.11), while there were no significant differences in the number of errors

made on trials with smartphone notifications (N = 19442, M = 2.72%, SD = 0.16) compared to

control sounds trials (N = 19429, M = 2.95%, SD = 0.17; Table 5). These results indicate that

accuracy on rare trials was worse than on frequent trials, as expected, however the presence of

smartphone notification did not impair accuracy relative to control sounds.

Table 2. Regressions for reaction times for frequent and rare trials predicted by sound condition.

95% CI

Predictor b SE Lower Upper df t p
Frequent Trials

Sound b 3.54 0.90 1.79 5.31 37632 3.95 < .001

Rare Trials

Sound b 2.81 2.87 -2.82 8.45 37699 0.98 .327

Dependent variable: RT (ms). Reaction times on the oddball task for frequent and rare target trials separately as a function of sound condition (smartphone vs. control).
b Sound condition was contrast coded at -.5 for control sound and .5 for smartphone sound. Dependent variable = Reaction time in ms. CI = Confidence Interval.

https://doi.org/10.1371/journal.pone.0277220.t002

Table 3. Regression for reaction time predicted by trial frequency, sound condition, and smartphone addiction.

95% CI

Predictor b SE Lower Upper df t p
Trial Frequency a 50.97 3.74 43.54 58.41 69 13.64 .001

Sound b 3.19 1.51 0.24 6.13 37700 2.12 .034

SAPS c 6.89 14.12 -21.18 34.96 69 0.49 .627

Trial Frequency x Sound -0.72 3.01 -6.62 5.28 37700 -0.24 .811

Trial Frequency x SAPS -2.41 10.90 -24.09 19.24 69 -0.22 .826

Sound x SAPS 1.94 4.38 -6.64 10.52 37696 0.44 .658

Trial Frequency x Sound x SAPS -8.53 8.76 -25.69 8.63 37696 -0.97 .330

Reaction times on the oddball task as a function of trial frequency (rare vs. frequent), sound condition (smartphone vs. control), and smartphone addiction levels.
a Trial frequency was contrast coded at -.5 for frequent and .5 for rare target trials.
b Sound condition was contrast coded at -.5 for control sound and .5 for smartphone sound.
c SAPS = Smartphone Addiction Proneness Scale (mean centered). Dependent variable = Reaction time in ms. CI = Confidence Interval.

https://doi.org/10.1371/journal.pone.0277220.t003
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Individual differences in smartphone addiction levels had no significant effect on error

rates overall, p = .688, or in terms of responses between frequent and rare trials, p = .534,

sound conditions, p = .793, nor their interaction, p = .391, showing that individual differences

in smartphone addiction did not affect task performance in terms of accuracy.

Neural findings

ERP oddball effect. Paired sample t-tests were conducted to examine overall ERP differ-

ences between rare and frequent trials (Fig 4). P3 amplitude was significantly larger on rare

versus frequent trials, Cohen’s d = .29 (small to medium effect size). There were no significant

differences in P2 or N2 amplitudes between rare and frequent trials (Table 6).

ERPs between sound conditions. Paired sample t-tests were conducted to examine

overall ERP differences between trials with smartphone and control sounds. P2 was

Table 4. Regressions for reaction times on frequent and rare trials predicted by sound condition and smartphone addiction.

95% CI

Predictor b SE Lower Upper df t p
Frequent Trials

Sounda 3.54 0.90 1.79 5.31 37631 3.95 .001

SAPSb 8.10 11.74 -15.24 31.43 69 0.49 .493

Sound x SAPS 6.20 2.62 1.07 11.34 37632 -0.24 .018

Rare Trials

Sounda 2.83 2.87 -2.80 8.46 37700 0.98 .325

SAPSb 5.69 17.90 -29.89 41.25 69 0.32 .752

Sound x SAPS -2.32 8.34 -18.70 14.05 37698 -0.28 .781

Reaction times on the oddball task as a function of sound condition (smartphone vs. control) and smartphone addiction with separate results for frequent and rare

trials.
a Sound condition was contrast coded at -.5 for control sound and .5 for smartphone sound.
b SAPS = Smartphone Addiction Proneness Scale (mean centered). Dependent variable = Reaction time in ms. CI = Confidence Interval.

https://doi.org/10.1371/journal.pone.0277220.t004

Fig 3. Interaction analysis for reaction times predicted by sound condition and smartphone addiction. Plot of reaction

times on trials with smartphone sounds (dashed line) vs. control sounds (solid line) as a function of individual differences

in the proneness to smartphone addiction. Plotted separately for frequent and rare target trials.

https://doi.org/10.1371/journal.pone.0277220.g003
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marginally smaller on smartphone versus control sound trials, Cohen’s d = .12 (Table 7). N2

was significantly larger on smartphone versus control sound trials, Cohen’s d = .13 (small

effect size; Fig 5), suggesting that people generally had lower levels of cognitive control on

trials with smartphone sounds. P3 did not significantly differ on smartphone versus control

sound trials. These results indicate that overall, people had greater neural activation impli-

cated in cognitive control on trials with smartphone notifications (vs. control) sound trials,

while early and late attentional processes linked to stimulus orienting and categorization

were not involved.

ERP oddball effect between sound conditions. Paired sample t-tests were conducted to

examine differences in the ERP oddball effect (ERPs on rare minus frequent trials) between tri-

als with smartphone and control sounds. The N2 oddball effect was significantly larger on

smartphone versus control sound trials, Cohen’s d = .28 (small to medium effect size; Fig 6),

pointing to the increased recruitment of cognitive control processes on smartphone trials.

There was no significant difference in P2 or P3 oddball effect between the sound conditions

(Table 8).

Table 5. Logistic regression of error rates predicted by trial frequency and sound condition.

95% CI

Predictor Odds Ratio p>z Lower Upper

Trial Frequency a 17.83 27.41��� 2.68 3.10

Sound b 0.92 -1.38 -0.22 0.04

Trial Frequency x Sound 0.84 .-1.36 -0.43 0.08

Binomial logistic regression for the likelihood of an incorrect response.
a Trial frequency was contrast coded at -.5 for frequent and .5 for rare target trials.
b Sound condition was contrast coded at -.5 for control sound and .5 for smartphone sound. Dependent variable = Count of incorrect trials, (0 = Correct, 1 = Incorrect).

CI = confidence interval.

��� p< .001.

https://doi.org/10.1371/journal.pone.0277220.t005

Fig 4. Overall ERP waveforms and scalp maps. A. Aggregated ERP waveforms for frequent (black lines) and rare

trials (red lines). B. Aggregate ERP scalp distribution maps for P2 at 200 ms, N2 at 350 ms, and P3 at 450 ms latencies.

Red color reflects activity for P2 and P3. Blue color reflects activity for N2. (Darker colors reflect increased activity).

https://doi.org/10.1371/journal.pone.0277220.g004
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Overall ERPs and smartphone addiction. Linear models examining overall ERP mean

amplitudes with smartphone addiction as a continuous predictor variable revealed that people

higher in smartphone addiction had a significantly smaller overall P2, ƒ2 = .09 (small effect

size; Table 9 and Fig 7). N2 and P3 did not significantly differ as a function of individual differ-

ences in smartphone addiction.

ERP oddball effect and smartphone addiction. Linear models revealed no significant

differences in P2, N2, or P3 oddball effects as a function of individual differences in smart-

phone addiction (Table 10).

Overall ERPs by sound condition and smartphone addiction. Linear models examining

differences in mean ERP amplitudes as a function of trials with smartphone versus control

sounds and smartphone addiction revealed no significant interaction between smartphone

addiction and sound trials for P2, b = 1.01, SE = 0.66, t(54) = -1.52, p = .133, 95% CI [-2.33,

0.31], N2, b = 0.23, SE = 0.63, t(54) = 0.37, p = .715, 95% CI [-1.03, 1.49], or P3, b = 0.16,

SE = 0.81, t(54) = 0.20, p = .841, 95% CI [-1.45, 1.77].

ERP oddball effects by sound condition and smartphone addiction. A linear model

with the mean ERP amplitude oddball effect as a dependent variable and trials with smart-

phone versus control sounds and smartphone addiction as a continuous predictor variable

revealed no significant interactions for P2, b = 2.31, SE = 1.47, t(54) = 1.57, p = .119, 95% CI

[-0.59, 5.20], N2, b = 0.54, SE = 1.46, t(54) = 0.37, p = .710, 95% CI [-2.37, 3.48], or P3,

b = 2.09, SE = 1.73, t(54) = 1.21, p = .232, 95% CI [-1.36, 5.54].

Discussion

The current study investigated the effects of smartphone notifications on behavioral and neu-

ral markers of top down executive functions, namely cognitive control and attentional pro-

cesses known to play a role in stimulus orienting and categorization. The study further aimed

to examine whether these effects varied as a function of individual differences in self-reported

proneness to smartphone addiction.

Table 6. Paired samples t-tests for ERP amplitudes between trial frequency.

M (SD) 95% CI

ERP Frequent Trials Rare Trials Mdiff Lower Upper df t p
P2 at Fz 8.45 μv (3.66) 8.88 μv (3.98) 0.42 -0.06 0.91 53 1.74 .088

N2 at F3a 4.24 μv (3.32) 4.08 μv (3.94) -0.16 -0.72 0.40 53 -0.58 .567

P3 at Pz 10.66 μv (3.96) 12.15 μv (6.10) 1.50 0.58 2.42 53 3.26 .002

Grand averaged ERP amplitudes (in microvolts) on the oddball task for frequent and rare trials. ERPs were time-locked to the presentation of the visual stimulus.
aN2 is a negative going potential, thus smaller values indicate larger ERP amplitude. Dependent Variable = ERP mean amplitude. CI = confidence interval.

https://doi.org/10.1371/journal.pone.0277220.t006

Table 7. ERP amplitudes between the smartphone and control sound trials.

M (SD) 95% CI

ERP Smartphone Control Sound Mdiff Lower Upper df t p
P2 at Fz 8.44 μv (3.80) 8.89 μv (3.83) -0.46 -0.92 0.01 53 -1.98 .053

N2 at F3a 3.94 μv (3.38) 4.39 μv (3.78) -0.45 -0.89 -0.02 53 -2.09 .041

P3 at Pz 11.42 μv (4.84) 11.39 μv (5.08) 0.03 -0.53 0.58 53 0.09 .927

Grand averaged ERP amplitudes (in microvolts) on the oddball task for frequent and rare trials. ERPs were time-locked to the presentation of the visual stimulus.
aN2 is a negative going potential, thus smaller values indicate larger ERP amplitude. Dependent Variable = ERP mean amplitude. CI = confidence interval.

https://doi.org/10.1371/journal.pone.0277220.t007
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General effects of smartphone notifications on cognitive control

In line with our predictions, people responded slower on trials paired with smartphone (vs.

control) sound notifications, although this effect was small. This finding is in line with recent

work demonstrating, across two studies, that reaction times on trials with (vs. without) phone

notifications were significantly slower [58].

These findings also offer partially contrasting evidence to previous literature which found

that exposure to smartphone notifications on a sustained attention task [23] and Go/No-Go

task [44] increased the speed of responding to target stimuli, which was also linked to an

Fig 5. N2 amplitude on smartphone and control sound trials. N2 ERP mean amplitudes on trials with smartphone

and control sounds. aN2 is a negative going potential, thus smaller values indicate larger ERP amplitudes.

https://doi.org/10.1371/journal.pone.0277220.g005

Fig 6. N2 ERPs for trial frequency and sound conditions. N2 ERP amplitudes on rare and frequent trials with

smartphone and control sounds. The oddball effect is difference between rare and frequent trials. aN2 is a negative

going potential, thus smaller values indicate larger ERP amplitude. A) Bar chart of mean N2 amplitudes. B) ERP

waveforms for frequent trials with control sounds (black line), frequent trials with smartphone sounds (red line), rare

trials with control sounds (blue line), and rare trials with smartphone sounds (green line). C) Scalp maps of N2 at 300

ms for frequent and rare trials after delivery of the sound stimulus.

https://doi.org/10.1371/journal.pone.0277220.g006
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increase in participant error rates. We, however, found that error rates did not differ between

the sound conditions. An important distinction between the current study and Stothart et al.

[23] is that the current study employed a generic notification sound, whereas participants in

Stothart and colleagues’ study received notifications from their personal devices. Though peo-

ple may likely have a different reaction to their own smartphone notifications, the current

study sought to understand the general influence of smartphone notifications on staying

focused on the task at hand.

We also found that the oddball effect did not differ between the smartphone notification

and control sound trials. Prior work has demonstrated similar null effects of smartphone noti-

fications on behavioral measures of cognitive control [44, 59]. In addition, recent findings

demonstrate an habituation effect on reaction times during a cognitive task following the pre-

sentation of a phone notification [58]. It could be the case that the behavioral effects of smart-

phone notifications on cognitive control were lost due to habituation to the auditory stimuli.

To assess for habituation, we examined if null effects were present separately in frequent

and rare trials. Frequent trials were presented 768 times whereas rare trials were presented 96

times. Thus, if habituation did occur, a more robust null effect should have been observed for

frequent trials. Interestingly, results indicated that smartphone notification sounds were asso-

ciated with delayed response speed on frequently, but not rarely presented trials. This suggests

that habituation to the sound stimuli may not explain the null effect for cognitive control. It

could be that greater cognitive demand on rare trials served to prevent distraction from the

smartphone notifications. However, during less cognitively demanding frequent trials, smart-

phone notifications did appear to have an effect on how quickly people responded. This find-

ing is in line with the cognitive load theory of selective attention [14], which posits that when

cognitive load is high, such as for rare trials, distractor interference is less likely to occur. Yet,

when cognitive load is low, such as for frequent trials, distractor interference is more likely.

Table 8. ERP oddball effect between the smartphone and control sound trials.

M (SD) 95% CI

ERP Smartphone Oddball Effect Control Sound Oddball Effect Mdiff Lower Upper df t p
P2 at Fz 0.09 μv (2.83) 0.76 μv (2.48) -0.67 -1.75 0.40 53 -1.26 .213

N2 at F3a -0.67 μv (2.62) 0.35 μv (2.88) -1.02 -2.03 -0.01 53 -2.03 .047

P3 at Pz 1.47 μv (3.46) 1.52 μv (4.53) -0.05 1.16 0.58 53 -0.08 .936

ERP oddball effect amplitudes (in microvolts) on the oddball task for trials with smartphone and control sounds. ERPs were time-locked to the presentation of the visual

stimulus.
aN2 is a negative going potential, thus smaller values indicate larger ERP amplitude. Dependent Variable = ERP mean amplitude oddball effect. CI = confidence interval.

https://doi.org/10.1371/journal.pone.0277220.t008

Table 9. Overall P2, N2, and P3 as a function of individual differences in smartphone addiction.

95% CI

ERP Predictor b SE Lower Upper df t P
P2 at Fz SAPSb -3.04 1.44 -5.94 -0.15 52 -2.11 .039

N2 at F3 SAPS -2.47 1.37 -5.22 0.28 52 -1.80 .077

P3 at Pz SAPS -2.26 1.94 -6.14 1.63 52 -1.16 .250

ERP amplitudes (in microvolts) on the oddball task as a function of individual differences in smartphone addiction. ERPs were time-locked to the presentation of the

visual stimulus. aN2 is a negative going potential, thus smaller values indicate larger ERP amplitude.
bSAPS = Smartphone Addiction Proneness Scale (mean centered). Dependent variable = ERP mean amplitude. CI = Confidence Interval.

https://doi.org/10.1371/journal.pone.0277220.t009
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Contrary to our predictions, we found N2 amplitudes, as well as N2 oddball effect were

greater on trials with smartphone compared to control sound trials, suggesting an upregula-

tion of cognitive control when people were exposed to smartphone notifications. This finding

is in contrast to prior work which found N2 amplitudes on a cognitive control task to be lowest

when a smartphone notification was delivered during the task compared to before or not at all.

We did not find this effect of early (P2) and late (P3) attentional processes, which are typically

associated with stimulus orienting and categorization. N2 is considered to be involved in cog-

nitive control processes including strategy regulation, immediate action control, novel stimuli

detection, and orienting of visual attention [31]. It appears that regardless of the varying degree

of cognitive load of trial frequency (i.e., rare vs. frequent), trials with smartphone notification

were associated with greater neural activation underlying cognitive control.

The role of individual differences in smartphone addiction

In this study we found that individual differences in smartphone addiction did not moderate

the effects of smartphone notifications as a function of trial type overall. However, examining

frequent and rare trials separately, we found that higher levels of smartphone addiction were

Fig 7. Correlation between smartphone addiction and P2 ERP. Correlation between smartphone addiction

proneness and the overall P2 mean amplitude (P2 at site Fz within the 150–210 ms time window), indicating that

people with higher levels of smartphone addiction show reduced neural activation implicated in early attentional

mechanisms.

https://doi.org/10.1371/journal.pone.0277220.g007

Table 10. Regressions for ERP oddball effect predicted by smartphone addiction.

95% CI

Oddball ERP Predictor b SE Lower Upper df t p
P2 at Fz SAPSb 0.78 0.72 -0.65 2.22 52 1.10 .278

N2 at F3a SAPS 0.90 0.81 -0.73 2.54 52 1.11 .273

P3 at Pz SAPS -0.51 1.36 -3.24 2.22 52 -0.38 .708

P2, N2, and P3 oddball effect as a function of individual differences in smartphone addiction. ERPs were time-locked to the presentation of the visual stimulus.
a N2 is a negative going potential, thus smaller values indicate larger ERP amplitude.
b SAPS = Smartphone Addiction Proneness Scale (mean centered). Dependent Variable = ERP mean amplitude oddball effect. CI = Confidence Interval.

https://doi.org/10.1371/journal.pone.0277220.t010
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associated with significantly slower responses on trials with smartphone sounds only on fre-

quent, but not on rare trials, suggesting that for contexts involving greater cognitive load, such

as perceptually novel stimuli, smartphone notifications may impact cognitive capacities to a

lesser extent.

We also found that higher levels of smartphone addiction were associated with decreased

P2 activation overall. P2 activation is considered to reflect a capacity to withdraw attentional

resources away from the stimulus [36, 42]. One explanation for this result may be that these

individuals are more frequently exposed to notifications on their smartphones, and thus may

be less likely to withdraw attention away from the smartphone notifications.

Finally, we found no support for our hypothesis that higher levels of smartphone addiction

would be associated with worse cognitive control, reflected by a smaller ERP oddball effect.

This suggests that cognitive control assessed as the oddball effect, or the difference in neural

activation between frequent and rare trials, did not vary according to levels of reported smart-

phone addiction. This finding lends no support for contrasting evidence from prior studies

demonstrating decreased [44] and increased [43] N2 amplitudes for people higher in smart-

phone addiction.

Furthermore, our results revealed that higher levels of smartphone addiction were not sig-

nificantly associated with changes in neural activity between sound conditions. Trials with

smartphone notification sounds compared to control sounds did not differ in terms of ERP

amplitude as a function of smartphone addiction. Nor were smartphone addiction levels asso-

ciated with a difference in the oddball effect between sound conditions. Thus, levels of smart-

phone addiction had no effect on neural activity associated with cognitive control for

smartphone notification sounds versus control sounds.

In conclusion, we found partial support to the proposal that cognitive control may be the

mechanism for the effect of smartphone notifications reported in the literature, such as their

potential unwanted interruption of social interactions [4], walking and driving [5, 6], and edu-

cational activities [7, 8]. Further research is needed to clarify the extent to which cognitive con-

trol serves as the primary underlying neural mechanism by which these smartphone

interruptions negatively impact day-to-day outcomes. It may be that an alternative cognitive

process may be more impacted by smartphone notifications, such as working memory, and

could thus provide a more complete explanation as to how these interruptions influence peo-

ple’s lives.

From the perspective of cognitive resource allocation, (i.e. cognitive load theory [14]), one

explanation of the findings could be that participants developed a mental framework of associ-

ation between the amount of cognitive resources necessary to attend to smartphone notifica-

tions and the amount of top-down control available to sacrifice during task performance. As

such, the results suggest that attentional control resources were more easily sacrificed on sim-

ple (i.e., frequent) trials, and less so on more difficult (i.e., rare) trials. The lack of a habituation

effect, reflected by the null findings for smartphone addiction, further supports this

interpretation.

Limitations and future directions

One limitation of this study was that smartphone addiction was assessed with a self-report

measure, although this measure has good psychometric properties [50]. Future work may

examine the link between cognitive control and more objective measures of smartphone use,

such as data from the smartphone use tracking apps. Furthermore, reported levels of smart-

phone addiction proneness for the current sample was on the lower end of the possible range.

Future work should investigate cognitive effects of smartphone notifications in people who
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report higher levels of problematic smartphone use. In addition, the present study included a

single unfamiliar control sound. Future studies may add additional control sounds or include

trials without sounds for comparison.

Although the N2 is a common approach for measuring electrophysiological markers of con-

flict monitoring processes, it is not the only ERP component worth examining. The current

study did not assess alternative conflict monitoring ERPs, such as the error-related negativity

(ERN) component, which is said to capture ERP activity associated with incorrect responses

[60, 61]. We were primarily interested in neural activity during correct task responses to mea-

sure the neural effect smartphone notifications without the influence of error-related neural

activity. Future work, however, needs to examine these alternative ERP components to further

elucidate the way smartphone notifications influence top-down control processes.

The current study employed mixed linear model analyses for behavioral measures, while

using grand-averaged ERPs due to lack of available data, in turn reducing explainable variance

within participants. Future ERP analyses may be improved by including within subject vari-

ance into the regression models. Doing so may provide a more complete picture of how smart-

phone use affects neural processes underlying attention and cognitive control. Along a similar

line, many of the effect sizes of the results were small, thus interpretation of these findings

should be approached with caution.

Finally, the generalizability of the findings from this study is limited to mostly white under-

graduate college students in the Midwest/Southern United States. Though it is critically impor-

tant to understand the cognitive effects of smartphone use in college students, more diverse

samples are needed. It may be that college students in general have relatively greater levels of

attention and cognitive control, however those in less cognitively demanding career fields may

show different pattern of results. For example, prior work has found a link between smart-

phone notifications delivered during a cognitive task to be slower for adolescents (vs. mid-life

adults) [58]. This suggests that younger populations may be particularly vulnerable to the dis-

tractions of smartphone notifications. Future work should investigate how smartphone notifi-

cations and smartphone use in general influences the cognitive capacities of participants from

different age groups and sociocultural backgrounds. The digital age is characterized by the

seemingly constant use of modern technologies, more so now than ever as a result of social dis-

tancing and isolation. We must strive to more fully understand how these technologies influ-

ence our cognitive functioning. By doing so, we can attempt to maximize the benefits, while

minimizing the costs of using these incredibly powerful technologies.
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